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Abstract

A curve strip Fourier p-element for free vibration analysis of circular and annular sectorial thin plates is presented. The

element transverse displacement is described by a fixed number of polynomial shape functions plus a variable number of

trigonometric shape functions. The polynomial shape functions are used to describe the element’s nodal displacements and

the trigonometric shape functions are used to provide additional freedom to the edges and the interior of the element. With

the additional Fourier degrees of freedom (dof) and reduce dimensions, the accuracy of the computed natural frequencies

is greatly increased. Results are obtained for a number of circular and annular sectorial thin plates and comparisons are

made with exact, the curve strip Fourier p-element, the proposed Fourier p-element and the finite strip element. The results

clearly show that the curve strip Fourier p-element produces a much higher accuracy than the proposed Fourier p-element,

the finite strip element.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of the flexural vibration of circular and annular sectorial thin plates is of some practical
importance, since components with sectorial geometries are widely used in curved bridge decks and
aeronautical structures, etc.

For uniform, isotropic, sectorial plates with both radial edges simply supported, exact free vibration
solutions are obtainable for arbitrary boundaries conditions at the circumferential edge, as mentioned by
Leissa [1]. These solutions utilize the Bessel functions of the first kind, Jm(kr) and Im(kr), where m is typically
not an integer. An equivalent procedure was later used by Rubin [2], however, solutions to the equation of
motion were developed by the Frobenius method, instead of using Bessel functions. For sectorial plates with
free circumferential edge, exact solutions have been given by Westmann [3]. Kim and Dickinson [4] also
presented results for annular and circular, thin, sectorial plates subject to certain complicating effects. In
addition to these studies presenting exact solutions, the Rayleigh–Ritz method has also been used to determine
approximate natural frequencies for some case [3–5].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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The finite element method has been used by Khurasia and Rawtani [6] and Cheung [7] to study the vibration of
circular plates. The accuracy of the solution may be improved in two ways for the finite element method. The first
is the h-version to refine the finite element mesh and the second is the p-version to increase the order of
polynomial shape functions for a fixed mesh. Zienkiewicz and Taylor [8] concluded that, in general,
p-version convergence is more rapid per degree of freedom introduced. The Fourier p-elements are popular for
the dynamic problems. Leung and Chan [9] gave the trigonometric shape functions for the axial vibration analysis
of a two-node bar. Houmat [10] adopt sector Fourier p-element for the free vibration analysis of sectorial plates.
The classical finite strip method, pioneered by Cheung [11] is an efficient analysis tool for structures with regular
geometry and simple boundary conditions. It is a hybrid Ritz approach which combines the versatility of the finite
element method and rapid convergence of the Ritz method by selecting suitable trial functions a priori. Cheung
proposed the finite strip method for structural analysis of prismatic domain problems and in contrast to
discretizing all domains as commonly carried out in FEM, only the transverse cross-section is discretized. Along
the longitudinal coordinate, however, the functions and their differential are still continuous and smooth. Thus,
the method is regarded as a semi-analytical method. The method may reduced from three dimensions to two
dimensions and two dimensions to one dimension, so it can save more time and makes the calculation results are
more accurate. Cheung and Chan [12] adopt finite strip method for the free vibration analysis of thin and thick
sectorial plates. Mizusawa and Kajita [13] adopt spline strip method for the vibration of annular sector plates.

In the present paper, combines the finite strip method with the proposed Fourier p-element method, to
calculate the flexural frequencies of circular and annular sectorial thin plates. The boundary conditions are
considered to be any combination of classical boundary conditions.
2. Analysis

The uniform annular sectorial thin plate is imagined to be separated into a small number of curve strip
Fourier p-element, each curve strip Fourier p-element having a constant thickness of its own. The coordinate
system used to define the geometry of the curve strip Fourier p-element is shown in Fig. 1.

Considering a curve strip Fourier p-element defined by the sides i and j, the maximum strain energy Vmax

and the kinetic energy Tmax have the forms
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where D0 denote the flexural rigidities D0 ¼ Eh3=12ð1� m2Þ, h the thickness of curve strip Fourier p-element, E

and m are Young’s module and Poisson ratios, where r is the material density.
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Fig. 1. An annular sectorial thin plate and curve strip Fourier p-element.
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For free vibration, the transverse displacement w can be written as

w ¼
X1
m¼1

Ne
m

� �
de

m

� 	
sin ot, (3)

where ½Ne
m� is the shape functions matrix of the element, and de

m ¼ f
wim jim wjm jjm wp gT, p ¼ 1, 2,y

is the vector of nodal displacement for curve strip Fourier p-element. m is numbers of nodal radius. wim, jim,
wjm, jjm are the primary displacements by the sides i and j. wp represent internal displacement and are to be
eliminated before assembling element matrix. Leung et al. [9] adopted the Fourier enriched shape functions
f iðzÞ ¼ ½1� x; x; sinðppxÞ�, (p ¼ 1, 2,y) to analyze the axial vibration of a two-node bar. The sine functions
represent internal dof. When considering the flexural vibration of an annular sectorial thin plate, the
appropriate shape functions matrix of the curve strip Fourier p-element method are
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where YmðyÞ is a series to satisfy the boundary conditions, in which
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Due to the flexural vibration of annular sectorial plate is a truly two-dimensional problem; the shape
functions ½Ne

m� may reduce from two dimensions to one dimension by the finite strip method [11]. For two
radial edges simply supported or clamped, Ym(y) is given by

(a) two radial edges simply supported

YmðyÞ ¼ sin
mpy
a
; m ¼ 1; 2; . . . ;1, (6a)

(b) two radial edges clamped supported

YmðyÞ ¼ sin
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a
� sinh
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a
�
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2
p; m ¼ 1; 2; . . . ;1. ð6bÞ

For the other boundary conditions, Ym(y) are given in Ref. [11].
Assumable that the motion is harmonic and inserting the expression for w into expressions for the strain

energy and kinetic energy then the stiffness matrix and the mass matrix of the element are obtained by
applying the principle of minimum potential energy and the Hamilton’s principle, respectively

Ke
m

� �
¼ D0

Z a

0

Z rj

ri

Be
m

� �T
D½ � Be

m

� �
rdrdy, (7)

Me
m

� �
¼ rh

Z a

0

Z rj

ri

Ne
m

� �T
Ne

m

� �
rdrdy, (8)



ARTICLE IN PRESS
L. Yongqiang, L. Jian / Journal of Sound and Vibration 305 (2007) 457–466460
where ½Be
m� and [D] are, respectively, given in close form by
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The expressions N1,r, N1,y, etc. are given in Appendix A.
For different boundary conditions, the concrete expression of the series Ym(y) is substituted into Eq. (10),

the stiffness matrix and the mass matrix of the element is calculated.
Before assembling the elements, the internal dof can be condensed by exact dynamic condensation [14]. The

stiffness matrix and the mass matrix of the element are expressed
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where p and s denote the central dof and subordinate dof. The central dof denote the primary displacements
wim, jim, wjm, jjm by the sides i and j. The subordinate dof denote the internal displacements wp, p ¼ 1, 2,y.
Ke

cc and Me
cc denote the stiffness matrix and the mass matrix of the central dof for the element. Ke

ss and Me
ss

denote the stiffness matrix and the mass matrix of the subordinate dof for the element.
The dynamic matrix is expressed
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where o is the flexural frequency of the plate.
Condensing all internal degrees of freedom of ½Ke

m� � o2½Me
m� according to Leung [14] gives the condensing

dynamic stiffness matrix, the dynamic stiffness matrix and the mass matrix
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Based on the routine method, the global dynamic stiffness matrix and mass matrix are assembled with the
condensing dynamic stiffness matrix and the mass matrix of element. Then, for free vibrations one has

D̂
� �
� o2 M̂

h i� 
u ¼ 0, (17)

where ½D̂� is the global dynamic stiffness matrix of the structure, ½M̂� is the global dynamic mass matrix of the
structure, u is the eigenvector in terms of the central dof of the structure.
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Table 1

Non-dimensional frequencies oR2
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=D0

p
for annular sectorial thin plates with simply supported radial edges and various edge conditions on circumferential edge (Ri/Ro ¼ 0.2, a ¼ p/

3, m ¼ 0.3)

Circumferential

edge conditions

Source of results dof Mode number

1 2 3 4 5 6

F–F Present 4 12.4020 (1) 47.3798 (2) 52.4684 (1) 102.1157 (3) 109.3283 (1) 122.5602 (2)

Fourier-p 20� 20 8 12.4028 47.3880 52.4643 102.1608 109.3201 122.5315

Finite strip 20� 1 4 12.4024 47.3839 52.4684 102.1444 109.3201 122.5438

Exact [4] – 12.40 47.38 52.47 102.1 109.3 122.6

F–S Present 4 39.6564 (1) 92.6767 (1) 97.9866 (2) 162.9202 (1) 177.6036 (3) 183.8936 (2)

Fourier-p 20� 20 8 39.6494 92.6562 97.9497 162.9202 177.4929 183.7952

Finite strip 20� 1 4 39.6518 92.6644 97.9661 162.9202 177.5298 183.8280

Exact [4] – 39.66 92.68 97.99 163.0 177.6 184.0

F–C Present 4 50.5053 (1) 108.4098 (1) 114.2036 (2) 183.2593 (1) 198.7510 (3) 205.9823 (2)

Fourier-p 20� 20 8 50.4961 108.3852 114.1585 183.2334 198.6098 205.8511

Finite strip 20� 1 4 50.5002 108.3934 114.1749 183.2334 198.6549 205.8962

Exact [4] – 50.51 108.4 114.2 183.3 198.8 206.0

S–F Present 4 12.4701 (1) 47.3798 (2) 53.7026 (1) 102.1157 (3) 116.3558 (1) 122.5684 (2)

Fourier-p 20� 20 8 12.4717 47.3880 53.7026 102.1608 116.3276 122.5438

Finite strip 20� 1 4 12.4713 47.3839 53.7026 102.1444 116.3276 122.5520

Exact [4] – 12.47 47.38 53.70 102.1 116.4 122.6

S–S Present 4 40.3083 (1) 97.5151 (1) 97.9907 (2) 177.6036 (3) 179.8588 (1) 183.9715 (2)

Fourier-p 20� 20 8 40.3050 97.4987 97.9538 177.4929 179.8055 183.8690

Finite strip 20� 1 4 40.3059 97.5069 97.9661 177.5298 179.8219 183.9059

Exact [4] – 40.31 97.52 98.00 177.6 179.9 184.0

S–C Present 4 51.6975 (1) 114.2118 (2) 115.3886 (1) 198.7510 (3) 204.8055 (1) 206.1176 (2)

Fourier-p 20� 20 8 51.6934 114.1626 115.3640 198.6098 204.7194 205.9864

Finite strip 20� 1 4 51.6934 114.1790 115.3722 198.6549 204.7481 206.0315

Exact [4] – 51.70 114.2 115.4 198.8 204.8 206.1

C–F Present 4 12.6148 (1) 47.3798 (2) 55.4084 (1) 102.1157 (3) 122.5930 (2) 122.6176 (1)

Fourier-p 20� 20 8 12.6152 47.3880 55.4043 102.1608 122.5643 122.5930

Finite strip 20� 1 4 12.6152 47.3880 55.4043 102.1444 122.5725 122.6012

Exact [4] – 12.61 47.38 55.41 102.1 122.6 122.6

C–S Present 4 41.3277 (1) 97.9989 (2) 102.3740 (1) 177.6036 (3) 184.1150 (2) 191.1512 (1)

Fourier-p 20� 20 8 41.3195 97.9620 102.3453 177.4929 184.0125 191.0856

Finite strip 20� 1 4 41.3236 97.9743 102.3535 177.5298 184.0453 191.1102

Exact [4] – 41.33 98.00 102.4 177.6 184.1 191.2

C–C Present 4 53.3869 (1) 114.2282 (2) 121.6827 (1) 198.7610 (3) 206.3595 (2) 217.9841 (1)

Fourier-p 20� 20 8 53.3746 114.1790 121.6376 198.6098 206.2242 217.8898

Finite strip 20� 1 4 53.3787 114.1954 121.6540 198.6549 206.2693 217.9226

Exact [4] – 53.39 114.2 121.7 198.8 206.4 218.0

L
.

Y
o

n
g

q
ia

n
g

,
L

.
J

ia
n

/
J

o
u

rn
a

l
o

f
S

o
u

n
d

a
n

d
V

ib
ra

tio
n

3
0

5
(

2
0

0
7

)
4

5
7

–
4

6
6

4
6
1



ARTICLE IN PRESS
L. Yongqiang, L. Jian / Journal of Sound and Vibration 305 (2007) 457–466462
3. Numerical examples

3.1. Free vibration of annular sectorial thin plates with simply supported radial edges

To study the accuracy of the present elements, annular sectorial thin plates with simply supported radial
edges and various edge conditions on circumferential edges is studied.

The non-dimensional free vibration frequencies oR2
o

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for annular sectorial thin plates with a ¼ p/3

using five sine terms are presented in Table 1. The nine boundary conditions are, respectively, F–F, F–S, F–C,
S–F, S–S, S–C, C–F, C–S and C–C. The symbolism F–F indicates that the edges r ¼ Ri and Ro are free and
free, respectively. The symbolism F–S indicates that the edges r ¼ Ri and Ro are free and simply supported,
respectively. The symbolism F–C indicates that the edges r ¼ Ri and Ro are free and clamped, respectively.

The results computed by 20 curve strip Fourier p-elements with p ¼ 5 are compared with the computed
results of Fourier p-element method with p ¼ 5 and finite strip method with a mesh of 20� 1 and the exacts in
Ref. [4] and are given in Table 1. The non-dimensional frequencies discrepancy between different methods and
exact value are shown in Fig. 2.

It can be found that the present method can obtain very high accurate frequencies of the annular sectorial
thin plates. The numbers in parentheses show the value of m in Table 1.

Table 2 gives the convergence study of the first six natural frequency parameters of an annular sectorial thin
plate with simply supported on four edges by means of a different number of sine terms with 20 curve strip
Fourier p-elements and compares them to the exact solution. It is shown that the computed results of the
present method with p ¼ 5 produces extremely good results.

3.2. Free vibration of completely free sectorial thin plates

Completely free sectorial thin plates of Ri ¼ 0 having a wide range of salient and re-entrant angles
(151pap3591) is studied. The first six modes using five sine terms were computed and are tabulated in
Table 3. The results computed by 20 curve strip Fourier p-elements with p ¼ 5 are compared with the exacts in
Ref. [15] in Table 3. It can be found that the present method can obtain very high accurate frequencies of the
sectorial thin plate.

3.3. Free vibration of circular thin plates

This example is the vibration analysis of circular thin plates with outer radius simply supported. The
structure parameters of circular thin plates are inner radius Ri ¼ 0.0, a ¼ 2p and YmðyÞ ¼ cos my. The
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Fig. 2. The non-dimensional frequencies discrepancy between different methods and exact value.
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Table 2

Comparison of the non-dimensional frequencies oR2
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=D0

p
for an annular sectorial thin plate with simply supported on four edges

Mode case 1 2 3 4 5 6

Present

p ¼ 1 40.3071 97.5110 97.9784 177.5667 179.8383 183.9387

p ¼ 2 40.3079 97.5110 97.9866 177.5831 179.8465 183.9510

p ¼ 3 40.3079 97.5110 97.9866 177.5913 179.8506 183.9592

p ¼ 4 40.3083 97.5151 97.9907 177.5995 179.8547 183.9674

p ¼ 5 40.3083 97.5151 97.9907 177.6036 179.8588 183.9715

p ¼ 6 40.3083 97.5151 97.9907 177.6036 179.8588 183.9715

Exact [4] 40.31 97.52 98.00 177.6 179.9 184.0

Table 3

Comparison of non-dimensional frequencies oR2
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=D0

p
for completely free sectorial thin plates with different a (m ¼ 0.3)

a (degrees) Source of

results

Mode number

1 2 3 4 5 6

15 Present 27.6369 70.3993 121.9984 132.4790 213.7976 232.6224

Leissa [15] 27.64 70.40 122.0 132.5 213.8 232.6

30 Present 27.9777 62.3093 70.9939 112.8382 128.1449 137.0017

Leissa [15] 27.98 62.31 70.99 112.8 128.1 137.0

45 Present 28.2885 42.5783 54.2931 73.9010 95.1615 133.3360

Leissa [15] 28.29 42.58 54.29 73.9 95.16 133.3

60 Present 27.7034 32.8702 34.3721 74.0416 74.7580 85.2058

Leissa [15] 27.70 32.87 34.37 74.04 74.76 85.21

75 Present 21.6373 27.0986 30.5130 52.2729 72.7037 73.2901

Leissa [15] 21.64 27.10 30.51 52.27 72.70 73.29

90 Present 16.1575 23.1765 30.5904 38.4157 57.6376 67.3194

Leissa [15] 16.16 23.18 30.59 38.42 57.64 67.32

120 Present 10.4465 17.4783 25.0574 31.2097 37.1912 47.3570

Leissa [15] 10.45 17.48 25.06 31.21 37.20 47.36

150 Present 7.9937 12.8309 20.1935 25.1829 31.4105 37.7464

Leissa [15] 7.994 12.83 20.19 25.18 31.41 37.75

180 Present 6.9321 9.4969 18.0572 18.1901 29.1828 29.2045

Leissa [15] 6.932 9.497 18.06 18.19 29.18 29.20

270 Present 4.6056 5.9946 9.2783 12.8883 17.2796 18.7018

Leissa [15] 4.606 5.995 9.278 12.89 17.28 18.70

330 Present 3.1982 4.9148 7.9050 9.0002 13.1815 16.4270

Leissa [15] 3.198 4.915 7.905 9.000 13.18 16.43

359 Present 2.7708 4.3019 7.6729 7.7256 11.3589 14.9113

Leissa [15] 2.771 4.302 7.673 7.726 11.36 14.91

L. Yongqiang, L. Jian / Journal of Sound and Vibration 305 (2007) 457–466 463
frequencies of circular thin plates with different Poisson ratios using 20 curve strip Fourier p-elements are
computed and compared with exact solutions [16] in Table 4. m is numbers of nodal radius in Table 4. The
computed results show that the curve strip Fourier-p element can obtain the very accurate results with a simple
mesh and a few trigonometric terms.
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Table 4

Comparison of the non-dimensional frequencies oR2
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=D0

p
for circular thin plates with outer radius simply supported (p ¼ 5)

m m Numbers of nodal circle Present Exact [16]

0.1 1 1 13.63838 13.6384

2 48.25218 48.2522

3 102.55568 102.556

2 1 25.37069 25.3707

2 69.89493 69.8949

3 134.08272 134.083

3 1 39.72360 39.7236

2 94.32979 94.3298

3 168.46051 168.461

0.2 1 1 13.77051 13.7705

2 48.36645 48.3665

3 102.66477 102.665

2 1 25.49346 25.4935

2 70.00665 70.0067

3 134.19121 134.191

3 1 39.84157 39.8416

2 94.44003 94.4400

3 168.56840 168.568

0.3 1 1 13.89824 13.8982

2 48.47886 48.4789

3 102.77327 102.773

2 1 25.61328 25.6133

2 70.11698 70.1170

3 134.29801 134.298

3 1 39.95728 39.9573

2 94.54898 94.5490

3 169.67467 168.675

L. Yongqiang, L. Jian / Journal of Sound and Vibration 305 (2007) 457–466464
4. Conclusions

A curve strip Fourier p-element method for the vibration analysis of circular and annular sectorial thin
plates is presented. For flexural vibration problems, the present curve strip Fourier p-element is a better choice
to obtain solutions with high accuracy.

For the flexural vibrations of annular sectorial thin plates with simply supported radial edges and various
edge conditions on circumferential edges, comparison with the results computed by the curve strip Fourier
p-elements, the proposed Fourier p-elements, the finite strip method and the exact solutions, respectively, was
carried out to examine the effectiveness. The results showed that the curve strip Fourier-p element was more
accurate in predicting the natural modes than the proposed Fourier p-elements and the finite strip method.
The six lowest modes of an annular sectorial thin plate with simply supported on four edges were analyzed
with different number of Fourier terms. The computed results using five Fourier terms were in good agreement
with the exact solutions.

For the natural frequencies of completely free sectorial thin plates having a wide range of salient and re-
entrant angles, comparison with the results computed by the curve strip Fourier p-elements and the exact
solutions was carried out. The computed results indicate that the curve strip Fourier p-elements can obtain
very high accurate frequencies of the sectorial thin plate.

In this way, circular thin plates with outer radius simply supported were analyzed by the curve strip
Fourier p-elements and the results were compared with exact solutions. The computed results show that the
curve strip Fourier p-element can obtain the very accurate results with a simple mesh and a few trigonometric
terms.
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Appendix A. The expressions N1,r, N1,h, etc.

N1;r ¼
6ðr� riÞðr� rjÞ

rj � ri


 �3 YmðyÞ; N2;r ¼ 1� 4
r� ri

rj � ri

þ 3
r� ri

rj � ri

� �2
" #

YmðyÞ,

N3;r ¼
�6ðr� riÞðr� rjÞ

rj � ri


 �3 YmðyÞ; N4;r ¼
ðr� riÞð3r� 2rj � riÞ

rj � ri


 �2 YmðyÞ,

Npþ4;r ¼
ri þ rj � 2r

rj � ri


 �2 sin
r� ri

rj � ri

pp
� �

� pp
r� rið Þ r� rj


 �
rj � ri


 �3 cos
r� ri

rj � ri

pp
� �" #

YmðyÞ,

N1;rr ¼
6ð2r� ri � rjÞ

rj � ri


 �3 YmðyÞ; N2;rr ¼
2

rj � ri

3
r� ri

rj � ri

� 2

� �
YmðyÞ,

N3;rr ¼
�6ð2r� ri � rjÞ

rj � ri


 �3 YmðyÞ; N4;rr ¼
6r� 4ri � 2rj

rj � ri


 �2 YmðyÞ,

Npþ4;rr ¼ ppð Þ2
r� rið Þ r� rj


 �
rj � ri


 �4 �
2

rj � ri


 �2
" #

sin
r� ri

rj � ri

pp
� �(

þ
2pp ri þ rj � 2r

 �

rj � ri


 �3 cos
r� ri

rj � ri

pp
� �)

YmðyÞ,

N1;ry ¼
6ðr� riÞðr� rjÞ

rj � ri


 �3 Y0mðyÞ; N2;ry ¼ 1� 4
r� ri

rj � ri

þ 3
r� ri

rj � ri

� �2
" #

Y0mðyÞ,

N3;ry ¼
�6ðr� riÞðr� rjÞ

rj � ri


 �3 Y0mðyÞ; N4;ry ¼
ðr� riÞð3r� 2rj � riÞ

rj � ri


 �2 Y0mðyÞ,

Npþ4;ry ¼
ri þ rj � 2r

rj � ri


 �2 sin
r� ri

rj � ri

pp
� �

� pp
r� rið Þ r� rj


 �
rj � ri


 �3 cos
r� ri

rj � ri

pp
� �" #

Y0mðyÞ,

N1;y ¼ Y0mðyÞ 1� 3
r� ri

rj � ri

� �2

þ 2
r� ri

rj � ri

� �3
" #

,

N2;y ¼ Y0mðyÞ r� rið Þ 1� 2
r� ri

rj � ri

þ
r� ri

rj � ri

� �2
" #

,

N3;y ¼ Y0mðyÞ
r� ri

rj � ri
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3� 2
r� ri

rj � ri
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r� rið Þ
2

rj � ri

r� ri

rj � ri
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� �
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1�
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� �
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N1;yy ¼ Y00mðyÞ 1� 3
r� ri

rj � ri
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þ 2
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" #

,

N2;yy ¼ Y00mðyÞ r� rið Þ 1� 2
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þ
r� ri
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" #

,
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r� ri
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� �2

3� 2
r� ri

rj � ri

� �
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2

rj � ri

r� ri
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� �
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